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1. INTRODUCTION 

IN RECENT years the boundary layer flow on a continuous 
flat surface, where both the free stream and plate velocities 
are constant and are moving in the same direction, has been 
studied by Abdelhafez 111 and Chappidi and Gunnerson 
[2]. Their analyses consider two cases separately, where the 
velocity of the moving wall UW is greater or less than the 
free stream velocity VX. Accordingly for the two cases of 
U, < U, and VW < U, two sets of boundary value problems 
were formulated and a numerical solution [I] and integral 
solution [2] were reported. 

This note describes a method to formulate a single set of 
equations employing a composite velocity [3], irrespective of 
whether U, > U, or U, < U,. 

2. ANALYSIS 

The flow field, shown in Fig. 1, is steady in a Cartesian 
coordinate system (x, y) fixed in space. Both the free stream 
velocity US and plate velocity U, are constants and are 
moving in the same direction. Further, the plate is main- 
tained at a constant temperature T,. The temperature of the 
ambient fluid is T, and the Prandtl number of fluid is CT. The 
momentum and thermal boundary layer equations are 

c&+y, = 0 (1) 

uu, f vu,, = vu,,, (2) 

uT,+vT,. = u-‘VT,,,, (3) 

subjected to the boundary conditions 

1’=0 u=U, v=O, T=T, (44 

Y-+* U-tU, T+ T,. (4’4 

Based on the similarity variables 

ti, = (20xU) ‘J’.f(!& 9 = JJ(Li/2vx)‘!2 

T = r, + (K - T&W (5) 

where U is some suitable reference velocity (to be specified 
later), the momentum boundary layer equations reduce to 

.f”’ +f.f” = 0 (6) 

f(0) = 0, f’(0) = u,/u, f’(W) = v,/u. (7) 

Following Abdelhafez [l] where the largest of the two vel- 
ocities was adopted as the reference velocity, i.e. 

t 

K if U, > U, 
U= 

U, if U,> U, (8) 

t Present address : Department of M~hanical Engin- 
eering, Aligarb Muslim University, Aligarh-2~20~2, India. 

the boundary conditions (7) lead to two sets of boundary 
conditions 

f(0) = 0, f“(0) = 1, f’(W) = u,/u,, v, > u, (9) 

f(0) = 0, .f’(O) = i&iv,, f’(W) = I, v,, > u,. (10) 

The solutions of (6) subject separately to (9) and (10) have 
been reported in refs. [I, 21. Earlier the mathematical prob- 
lem (6) subject to (IO) arose in Mirels work on the boundary 
layer behind a moving shock wave [4], Clauser [5] on the 
equilibrium of the outer layer of a turbulent boundary layer, 
Kalinin et al. [6] in film boiling or condensation on a flat 
surface and Merkin [7] in mixed convection on a flat surface 
embedded in a Darcian porous medium. 

In the present work, the reference velocity U is taken as a 
composite velocity [3] 

u= u,+u,. (11) 

Based on (11) and similarity variables (5) the momentum 
boundary layer equations reduce to 

.f”i-f.f” = 0 02) 

f(0) = 0, f’(0) = I --E, f’(aJf = e (13) 

where E is a parameter given by 

E = U,,./(U, + ri,), UW + (/lo # 0. (14) 

For classical Blasius problem E = 1 and for the Sakiadis [S] 
problem E = 0. The case where both the free stream and 
the plate velocities are in the same direction correspond to 
0 < E < 1. If E z 1, the free stream is directed towards the 
positive x-direction while the plate moves towards the nega- 
tive x-direction. If c < 0, the free stream is directed towards 
the negative x-direction while the plate moves towards the 
positive x-direction. 

The thermal boundary layer equations based on (5) and 
(I 1) lead to 

g” +crfg’ = 0 (15) 

$7(O) = 1, p(co) = 0. (16) 

The wall shear stress z, and heat transfer qW are given by 

The non-existence of solution for E > etr is proved in the 
Appendix. The numerical solutions show that for E < 1 the 
solutions are unique whereas for 1 $ E < s0 the solutions are 
dual. 
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FIG. 1. Flow model of a moving sheet subjected to parallel free stream 

3. RESULTS AND DISCUSSION 

Numerical solutions to the momentum boundary layer 
equation (12) subject to boundary conditions (13) have been 
obtained. For 0 < E 6 I the non-dimensional velocity dis- 
tribution (u- U,)/(L!, - U,) is displayed in Fig. 2. The 
results compare well for e = 0 with Sakiadis solution and 
E = I with the Blasius solution. The non-dimensional velocity 
profiles become steeper near the wall as E increases. The 
characteristic numerical solution for S”(0) and h = 
lim,,, (EV -f) are displayed in Fig. 3. For E < 1, the behav- 
iour of f”(0) is monotonic with E; it is negative For E -=I 0.5, 
positive for a > 0.5 and zero for E = 0.5. The change in sign 
of ,f”(O) at E = 0.5 is associated with a corresponding change 
of sign for normal component of velocity ; which is directed 
towards the wall for 0 < E -C 0.5 and away from the wall for 
0.5 < E < 1. Physically, the positive sign of f”(0) for E > 0.5 
means that the fluid exerts a dragging force on the sheet 
and negative sign for E < 0.5 implies that the fluid is being 
dragged by the sheet. Here zero skin friction does not mean 
separation and corresponds to the parallel flow U, = VW. 
Further, Fig. 3, shows that there exists a critical value 
a,, = 1.548 that is marked by an arrow on the E-axis. The 
solution is unique for E < I, dual for 1 < c -L Ed and no 
solution for E > Q, As E + I+ the dual solution corresponds 
to f”(0) + 0 and b -+ co rapidly. 

The approximate solution of momentum boundary layer. 
described in the Appendix compares well with the numerical 
solution for t: f I. This solution, however. is not workable 

0.8 

0.6 

for 1 < E < co (because the assumed velocity profile is not 
appropriate) nevertheless it shows that there is no solution 
for E > x0. Consequently there is an upper bound on I: < E,, 
for which solutions exist. 

For E < 0, CJz, < 0 the free stream velocity is directed 
towards the negative x-direction, the numerical solutions of 
the momentum boundary layer are also displayed in Fig. 3 
by dotted lines. It was found that the numerical solutions 
equations (12) and (13) do not decay exponentially at large 
r]. Therefore for E < 0 the integral solution of the Appendix 
can be usefully employed. 

For E = I/2 the closed form solutions of momentum and 
energy equations are 

f = r-l,Z. .f’“(O) = 0 

,q = erfc(qa’!‘/2). g’(0) = -(n/n) r:‘. (18) 

For 0 = 1 the solution of energy equation is related to 
momentum equation by 

9(n) = V(V) --El/r1 -2d (1% 
and this leads to the Reynolds analogy between momentum 
and heat transfer. Numerical solutions to the thermal bound- 
ary layer equation have been obtained for various values of 
Prandtl number D ranging from 0.1 to 100. The results for 
temperature profiles for o = 0.72 and various values of E 
are displayed in Fig. 4. The temperature gradient g’(0) for 
o = 0.72 and various values of .s are displayed in Fig. 5. Their 
behaviour is qualitatively similar to f”(O) and no additional 
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FIG. 2. Non-dimensional velocity profile on a moving sheet subjected to a parallel uniform free stream in 
the same direction (0 < E < I). 
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Asymptote 6 

d@ 1+0, b--C= 
f”(O) - 0 5 
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FIG, 3. Velocity gradient at the sheet f”(0) and displacement thickness b = lim,,, (~q-f) as a function 
of composite velocity parameter E. The critical value E* = 1.548 is marked by an arrow on E-axis beyond 
which no solution exists. E > 1, the sheet is moving in the negative x-direction (U, i 0); E < 0, the free 
stream is in negative x-direction (U, < 0) ; for 0 < E < 1 both free stream and wall velocities are in same 

direction. 
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FOG. 4. Temperature profile for cr = 0.72 on a moving sheet subjected to a free stream in the same direction 
(0 < E < I). 
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FIG. 5. Temperature gradient g’(0) for various values of 
(r~ = 0.72). The critical value E,, = 1.548 is marked by an 

arrow on the s-axis beyond which no solution exists. 

comment is needed. The effects of CT on the temperature 
gradient a.t the wall for 0.1 < g < 100 is displayed in Fig. 6. 
For fixed E, the magnitude of g’(0) increases with Prandtl 
number 0. On the other hand, when 0 is held fixed then for 
every increase of E, the magnitude of g’(0) decreases for large 
0, and g’(0) increases for small 0. In order to further explore 
this behaviour the asymptotic analysis at limiting Prandtl 
numbers was carried out and the results are summarized 
below. The heat transfer rate for D + 0 is 

g’(0) = - (2a&/n)“Z+2bu/7r+ E # 0 (20a) 

=ba+... e = 0. (20b) 

The results for o + 0 show that g’(0) is of O((r’:*) for E # 0 
and of O(a) for E = 0. This implies that at low d the heat 
transfer rateg’(0) can be enhanced by imposing a free stream. 
This is because at low D the thermal boundary layer thickness 
is very much larger than the momentum boundary layer. To 
the lowest order, the thermal boundary layer depends on the 
flow outside the boundary layer and momentum boundary 
layer can be neglected. Further, when E is of O(u) the two 
terms in (20a) are of same order. At a particular point E = ko, 
k = [(K-2)b]‘/2n, the two results (20a) and (20b) become 
the same. 

The heat transfer rate for u -+ cx: is 

g’(0) = -[2u(l -&)/X]“2+O(u”2), a#1 (21a) 

e= 1. (21b) 

The results show that g’(0) is of O(U”~) for E # 1 and of 
O(u”‘) for E = 1, This means that at high u the heat transfer 
rate g’(0) is reduced when free stream is imposed on the 
moving sheet, This is because at high u the thermal boundary 
layer is very thin and to the lowest order it is governed 
by the flow in the immediate vicinity of the sheet and the 
imposition of the free stream reduces the velocity gradient 
at the wall. 

Thus, the results of Fig. 6 are in confirmity with the asymp- 
totic behaviour for u + 0 and u + co. From Fig. 6 one can 
say that, there exists a uO(s) such that for u > uO, g’(0) 
decreases with E and u < 6,). g’(0) increases with E. Further, 
g’(0) remains practically constant at and around u = 0”. A 
crude estimate of u0 can be taken as 0.5. 

4. CONCLUSIONS 

1. The boundary layer on a moving sheet subjected to a 
parallel free stream can be studied by single set of equations 
(12) and (13), which are in contrast to earlier works [ 1, 21. 

I I I I 
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FIG. 6. Temperature gradient at the sheet g’(0) in the thermal 
boundary layer for various values of Prandtl number 

0.1 $ u < 100 and c = 0(0.2)1. 

2. The velocity gradient at wall f”‘(0) is positive (fluid 
exerts a drag force on the sheet) for E > 0.5, and negative 
(fluid is being dragged by the moving sheet) for E i 0.5. 
Further, f”(0) = 0 at E = 0.5 does not imply separation but 
the fact that the solution corresponds to the parallel flow 
and the momentum boundary layer is absent. 

3. The solution is unique for E < 1 and dual for I Q E < E,,. 
There is no solution for E > s0 implying that the theory is 
more complicated than the one considered here. 

4. The temperature gradient at the moving wall g’(0) 
increases at low u and decreases at high u when free stream 
is imposed on the moving sheet. Further, g’(0) remains prac- 
tically independent of E (free stream) around u = 0.5 for 
O<E<l. 
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APPENDIX: INTEGRAL ANALYSIS 

An integral of momentum equation (12) between limits 
zero to co gives 

(Al) 

Introducing a function @ such that 

4(O) = 0, &co) = 1. 

The momentum integral (Al) yields 

AZ = 4’(O)/[B, -B,-@, -2B,)] (A3) 

where 

s 

1. 
3, = I-d,d[, B2 = 

0 f 
0m cb-Pdi. 

Using the above results it can be shown that 

f”(0) = (2E- l~[#‘(O)(~, -B,-E(B, -2&,))j”2 

b = (2E- I)B,A. (‘44) 
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The relation (A4) shows that a solution does not exist for 
E > Em where s0 is given by 

Eg = l+(H-2)-l (A5) 

where H = PI/B2 is the shape factor (H > 2, Eg > 1). 

If one considers a trial velocity profile 

cb(i) = (31;-1?/2+ i $ 1; #4L’l = 1, i > 1 
B, = 3j8, Bz = 39/280 

then .Q = 2.46 and the solution is given by 

r(O) = (2s-- 1)(0,3536-0.1446~)“~ 

and for the trial profile 

(A61 

9(1)=2i-21’+14. ict; $J(i)=1, c>r 

B, = 3/10, BZ = 37/315 

c0 = 2.8 1 and the solution is given by 

f”(0) = (2~- 1)(0.365-0.130~)“~. (A7) 

The expression (A7) includes the two results (10) and (18) 
of ref. [2] as special cases. These solutions are good for E < 1 
as for E = 1 the error is about 2% and F = 0 the error is 
about 5%. As E + - r*), the asymptotic behaviour of integral 
solution (A7) leads to 

f”(O) -+ -0.72(-E)“’ 

h-t -0.83(-&)“2. (A8f 
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INTRODUCTION 

HONEYCOMB structures are often used in thermal insulating 
walls. Inside such walls, the main mechanisms of heat trans- 
fer are by natural convection and radiation. A number of 
studies for natural convection heat transfer in such an air 
layer were investigated by Asako et al. [l-3]. If the air layer 
is filled with thermal insulations, such as glass wool, both 
convective and radiative heat transfer rates will decrease. 
A numerical analysis was reported by Asako et al. [4] to 
investigate heat transfer characteristics by natural con- 
vection in such a porous layer. The results were obtained for 
both conductive and adiabatic honeycomb core wall thermal 
boundary conditions. These condi~ons exist when the honey- 
comb core walls are good conductors and thick, and also 

when they are thermally insulated. For thermal insulating 
walls, it is required to reduce the heat loss through the honey- 
comb core walls. Then, the honeycomb core walls should be 
made as thin as possible to reduce the heat conduction 
through it. The motivation for the present study is to analyse 
the case where the honeycomb core walls are assumed to 
be poor conductors and thin, such that the thermal wall 
boundary conditions approach the so-called ‘no-thickness’ 
wall boundary condition dictated by Nakamura et al. [5]. 
These three boundary conditions, ‘conduction’, ‘adiabatic’, 
and ‘no-thickness’, can be considered as three idealized ther- 
mal boundary conditions. Therefore, the heat transfer rate 
in a practical porous layer will have a value that lies within 
these three conditions. 

The numerical methodolo~ used in this study utilizes an 


